Скидки: На данный товар скидка не предоставляется.
1. Найти частное решение дифференциального уравнения и вычислить значение полученной функции y=*(x) при x=x0 с точностью до двух знаков после запятой.
1.23 y**= 1/cos2(x/2), x0 = 4*, y(0) = 0, y*(0) = 1.
2. Найти общее решение дифференциального уравнения, допускающего понижение порядка
2.23 x(y**+ 1) + y* = 0
3. Решить задачу Коши для дифференциального уравнения, допускающего понижение порядка.
3.23 yy*** y*2 = 0, y(0) = 1, y*(0) = 2.
4. Проинтегрировать следующие уравнения.
4.23 (y/2*(xy) + 2xysinx2y + 4)dx + (x/2*(xy) + x2sinx2y)dy = 0
5. Записать уравнение кривой, проходящей через точку A(x0, y0), и обладающей следующим свойством: отрезок, который касательная в любой точке кривой отсекает на оси Oy, равен квадрату абсциссы точки касания.
5.23 A(3, *2)
Дополнительная информация:
Подробное решение. Оформлено в Microsoft Word 2003 (Задание решено с использованием редактора формул)
Для удобства просмотра решений ИДЗ на смартфонах, высылается дополнительно файл в PDF-формате
Отзывы покупателей (0):