Задание 2
Вопрос 1. В каком случае система событий называется полной?
1.Если сумма вероятностей этих событий равна единице.
2.Если события несовместимы и равновозможны.
3.Если произведение вероятностей этих событий равно единице.
4.Если события являются несовместимыми и единственно возможными.
5.Если сумма вероятностей этих событий превышает единицу, а сами события являются совместимы.
Вопрос 2. Допустим, что при некотором испытании возможны события А и В, вероятность события А , вероятность несовместимого с А события B . Какое из приведенных ниже высказываний не всегда будет истиной?
1.Событие А является противоположным событию В.
2.Событие В является противоположным событию А.
3.Если события А и В являются единственно возможными, то система событий А, В является полной.
4.События А и В – равновозможные.
5.Событие, которому благоприятствуют А и В, является достоверным.
Вопрос 3. Какова вероятность того, что при трех бросаниях игральной кости три раза выпадает цифра 3?
1. .
2. .
3. .
4. .
5. .
Вопрос 4. Из урны, в которой 4 белых шара и 3 черных, случайным образом извлекают два шара. (Шар после из-влечения не возвращают в урну). Шары в урне различаются только цветом. Какова вероятность того, что первым бу-дет извлечен черный шар, а вторым – белый?
1. .
2. .
3. .
4. .
5. .
Вопрос 5. При попадании в мишень пули, она опрокидывается. Допустим, что о стрелке А известно, что он попа-дает в мишень с вероятностью , о стрелке В известно, что он попадает в мишень с вероятностью , а о стрелке С известно, что он попадает в мишень с вероятностью . Стрелки А, В, С одновременно выстрелили в мишень. Какова вероятность того, что мишень опрокинется?
1. .
2. .
3. .
4. .
5. .
Всего 14 заданий.